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Modulating drift dynamics of circle swimmers by periodic potentials
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We propose a method to modulate the drifting motion of overdamped circle swimmers in steady fluid flows
by means of static sinusoidal potentials. Using Langevin formalism, we study drift velocity as a function of
potential strength and wavelength with and without diffusional motion. Drift velocity is essentially quantized
without diffusion, but in the presence of noise, the displacement per cycle has a continuous range. As a function
of dimensionless potential wave number, domains of damped oscillatory and plateau regimes are observed in
the drift velocity diagram. At weak potential and fluid velocity less than powered velocity, there is also a regime
where drift velocity exceeds the fluid velocity. Methods based on these results can be used to separate biological
and artificial circle swimmers based on their dynamical properties.
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I. INTRODUCTION

Active microswimmers, which generate motion by harvest-
ing energy from their environment, have been the subject of
intense research both at fundamental and applied levels [1].
The desire to exploit these microswimmers for microscale
manipulations of both single-particle and collective dynamics
has led to proof-of-concept examples for smart microrobots
[1], multipart active self-assemblies [2], biomedical [3–6],
environmental remediation [7–10], cargo carrying [11–14], or
contactless pushing [15] applications. Controlling the motion
of these particles is of paramount importance to exploit them
for targeted applications.

In this paper, we combine fluid flow with one-dimensional
background potential to modulate the drifting motion of circle
swimmers in a fluid. Circle swimmers, also known as chi-
ral active particles, are a class of microscale self-propellers
which, due to structural asymmetry, follow circular trajecto-
ries [16] in the absence of noise [17] or any obstacles along
their paths [18,19] instead of straight paths. The propulsive
mechanism is abstracted away in our model, which should
therefore be applicable to stroke-based dynamics [20] as
well as self-phoretic propulsion [21]. We thus use the word
swimmer in a neutral sense. A Brownian circle swimmer
undergoing stochastic orientational dynamics superposed on
its deterministic powered rotary motion follows a curved tra-
jectory [22–24].

From a practical perspective, one may see two challenges
impeding the exploitation of rotary active particles for useful
applications in complex environments. One is controlling their
motion and the other is separating these particles based on
their dynamical properties. Controlling the dynamics of active
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particles is usually done through interaction with external field
[25] or background potential [26–29], particle-particle inter-
actions [15,30–34], and interactions with boundaries [22,35]
or hard obstacles [36–41]. Several techniques have been used
to separate circle swimmers, including motion in a patterned
substrate with L-shaped obstacles [18], chiral flowers [19],
rotary obstacles [42], or motion under a two-dimensional
background potential [26,27].

In our paper, we exploit a one-dimensional sinusoidal
standing wave [26] as one of the simplest potential fields that
can be applied to a swimmer in a fluid. To break the symmetry
when powered motion dominates the noise [17] and opens the
circular trajectory, a flow field is applied parallel to the wave
vector of the potential (see Fig. 1). Depending on the proper-
ties of the microswimmer, fluid velocity, and properties of the
wave (such as amplitude and wavelength), the microrobot’s
drift velocity can be controlled within a reasonable range.

In the negligible-noise regime, we find that, for a given
potential strength, the drift velocity as a function of potential
finesse consists of a set of discrete curves. With the intro-
duction of noise, these curves turn into a continuous curve
consisting of a damped oscillatory section and a plateau part.
We present the results in the form of a phase diagram that

FIG. 1. Schematic of the setup: A circle microswimmer is drifted
by fluid flow and its motion is modulated by a sinusoidal background
potential. The direction of the fluid flow is along the wave vector of
the potential.
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FIG. 2. (a) A rotary active particle with rectilinear v0 and angular ω speeds follows a circular trajectory in the absence of noise and an
external field. (b) Addition of a flow field opens the circular path into a cyclic trajectory and the particle drifts with the fluid. (c) Drift velocity
vd relative to fluid velocity v f as a function of finesse β with resolution �β = 0.01 for α = 1 and relative fluid velocity v f /v0 = 0.5. The
marks d–l on the graph represent the trajectories in the absence of noise and in the presence of background potential with α = 1 and finesse β

equal to (d) 1.00, (e) 1.94, (f) 1.97, (g) 2.00, (h) 2.60, (i) 5.40, (j) 5.41, (k) 8.92, (l) 8.93. The dark areas are minima of the potential, and the
light are maxima. The yellow dots in each figure show the beginning or end of a full cycle in a particle trajectory.

shows the drift velocity relative to fluid velocity as a function
of dimensionless potential strength and fluid velocity in the
plateau regime. The potential application for this research
could lead to modulating the drifting motion and sorting bi-
ological [43–48] and artificial [49–53] circle swimmers based
on their dynamical properties.

II. PROBLEM FORMULATION

In the absence of a potential, a rotary swimmer moves in a
fluid near a surface (xy plane) with velocity v = v0v̂, where v0

is the powered speed and v̂ is the swimmer’s intrinsic orienta-
tion. The active particle rotates with an angular velocity sωω

with ω > 0. Clockwise (sω = −1) rotation can be changed to
counterclockwise (sω = +1) by a reflection about the x axis
which changes nothing else, so the two cases must have the
same drift velocity. Therefore, we focus on the former with-
out loss. The chirality of the swimmer is stable and remains
unchanged. A background fluid flow with velocity v f = v f x̂
further translates the self-propeller in the x̂ direction. Under
overdamped dynamics, a static one-dimensional external po-
tential V (r) supplies an additive velocity contribution −μ∇V ,
where μ is the Stokes mobility of the swimmer.

The combination of powered motion, background fluid
flow, and spatially periodic potential governs the deterministic

dynamics of the swimmer and the instantaneous velocity is no
longer in the direction of the intrinsic orientation. The one-
dimensional potential is a standing wave μV (r) = C cos(Kx̂ ·
r) of amplitude C/μ and wavelength λ = 2π/K . From these
quantities, we can create dimensionless strength and finesse
parameters [26]

α = CK

v0
, β = Kv0

ω
= KR, (1)

respectively, where R = v0/ω is the free swimmer orbit radius
due to the powered motion in the absence of noise, fluid flow,
and periodic potential. Working in units of ω−1 for time and
R for length and taking into account the orientational and
translational diffusions, the overdamped motion of the particle
is governed by the Langevin equations

dr
dt

= v̂(θ (t )) + v f

v0
x̂ + α sin(β x̂ · r) x̂ + ξ(t ),

dθ

dt
= sω + ζ (t ), (2)

where, as shown in Fig. 2(a), θ is the angle the intrin-
sic orientation makes with the sωŷ direction, and sωv̂(θ ) =
− sin(θ )x̂ + cos(θ )ŷ. The two-dimensional zero-mean white
noise ξ has dimensionless strength γt = Dtω/v2

0 for passive
translational diffusion and the one-dimensional zero mean
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FIG. 3. Drift velocity vd relative to fluid velocity v f as a function of β with resolution �β = 0.1 for different values of α for parameter
pairs (v f /v0, γo) of (a) (0.5, 0), (b) (1.3, 0), (c) (0.5, 0.1), and (d) (1.3, 0.1). Dashed gray lines are theoretical curves according to Eq. (3) for
different values of n. (e)–(h) Histograms of x displacement over a single rotational period T relative to fluid velocity v f for points marked on
(d) for α = 1.2. The dashed red lines show the drift velocity. The tall peaks in the histograms represent the minima of the potential where the
particle tends to end up after each cycle.

white noise ζ with dimensionless strength γo = Do/ω ac-
counts for orientational diffusion. Dt and Do are conventional
translational and orientational diffusion coefficients, respec-
tively.

We ran the simulation for three values of fluid velocity
v f = 0.5v0, 0.9v0, and 1.3v0, six values of dimensionless
potential strength α = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2, in the
finesse range 1 � β � 20. The deterministic simulations (no
noise) were run for 100 periods of rotations with time steps
�t = T/3600. The drift speed is calculated from displace-
ment over the last 95 rotational periods, since the trajectories
are found to fall very close to the trajectory attractor after only
one period except in the transition regions. For simulations
with noise, for each pair of α and β we ran the simulations for
1000 rotational periods and we used the last 995 periods to
calculate the average drift speed shown in Fig. 3 and Figs. S2
and S3 of the Supplemental Material [54].

We chose the one-dimensional white noise values γo =
0.01 and 0.1 based off experimental data [50–52] showing
that a typical artificial swimmer has values 0.009 � γo � 0.05
[16]. For a swimmer to behave like a circle swimmer, angular
speed ω should be more than the orientational diffusivity
Do so the swimmer can rotate and move along a significant
portion of the circular trajectory before its orientation is dis-
torted by the stochastic noise. Therefore, γo should be less
than one. As shown in Fig. S1 in the Supplemental Material
[54], our chosen values for γo produce similar patterns of
damped oscillation at small values of β and a plateau regime at
higher values of β. For demonstration, we show the results for
γo = 0.1 in Figs. 3(c) and 3(d). Also, for translational noise
we have 0.005 � γt � 0.02 [16] and we picked γt = 0.001
and 0.01 for our simulations. As shown in Fig. S3 in the
Supplemental Material [54], the translational noise has similar
effects to orientational noise and in the main text we focus on
the effect of orientational diffusivity in Fig. 3.

III. RESULTS AND DISCUSSION

In what follows, we discuss the dynamics of the circle
swimmer in the noise-negligible regime and provide a simple
theory to explain the observations. Then, we add the effect
of noise to our system and investigate how it influences the
deterministic behavior.

A. Deterministic dynamics

We start our analysis with purely deterministic dynamics of
a circle swimmer as a result of its powered motion [Fig. 2(a)]
in the absence of noise where the state of the swimmer on
its trajectory is identified by θ . Addition of fluid flow with
velocity v f x̂ opens the circular trajectory and the microswim-
mer displaces with drift speed vd equal to the fluid speed v f

[Fig. 2(b)]. Adding the potential, however, causes the drift
velocity to deviate from the fluid velocity v f . The ratio vd/v f

is a function of potential and microswimmer characteristics,
the coupling of which is manifested in parameters α and β.

The background potential influences the microswimmer
drift in a controlled manner depending on values of α and
β. Figure 2(c) shows the drift velocity vd relative to fluid
velocity v f for constant α = 1 as a function of finesse β in
the the form of a set of discrete curves such that the drift
velocity jumps from one curve to the next at some transitions.
The marked points in Fig. 2(c) correspond to nine graphs,
Figs. 2(d)–2(l), showing the trajectory of the swimmer over
four rotational cycles. The dark areas are minima and the light
are the maxima of the potential. The transition in the trajec-
tories from one curve to another with increasing β follows
a shrink-expansion pattern. The videos in the Supplemental
Material [54] show this phenomenon for v f = 0.5v0, 0.9v0,

and 1.3v0 for various values of α. With an increase in β, the
trajectory shrinks before it is able to transition into a higher
drift velocity. After each shrinking and subsequent expansion,
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the swimmer does not reach as high a drift velocity as during
the previous expansion. This is shown in Fig. 2(c), comparing
the vd/v f of points g, j, and l .

For constant α = 1 and small values of β � 1, the open
trajectory turns into a distorted circular trajectory and the
particle is trapped inside the potential minimum. In the region
β � 1.93, the average drift velocity of the particle is nearly
zero. The particle is not able to pass the potential maxima.
With even higher values of β, the distortion continues up to a
point at which the trajectory passes the maximum of the po-
tential and thus opens. Figure 2(f) is an example of a transition
regime to an open trajectory where we see a repeating pattern
with periodicity more than one T . Eventually, at β � 2, the
trajectory opens and extends in space.

With even further increase in β, the trajectory shrinks while
during each period of powered motion the swimmer passes
only one potential maximum. The trend continues up to the
point [Fig. 2(i)] that with a small increase in β the trajectory
is ready to pass two potential maxima [Fig. 2(j)]. Again, with
still further increase in β, the trajectory shrinks and thus the
drift velocity decreases, until we reach a state that part of the
trajectory gets close to a potential maximum [Fig. 2(k)] and
afterward the swimmer passes three maxima [Fig. 2(l)]. This
pattern continues, with the swimmer skipping greater numbers
of potential maxima as we increase β.

The transitions between discrete curves in Fig. 2(c) are
the result of the change in the number of potential maxima a
swimmer passes over one period of rotation. We observe that
each curve has a dependance on β−1. The reason is that a par-
ticle passes n maxima during one rotation period T = 2π/ω

and thus moves forward a distance of nλ = 2πn/K . Thus, the
drift velocity vd relative to fluid velocity v0 is

vd

v f
= 1

v f
n

λ

T
= n

1

v f

ω

K
= n

1

v f

Rω

β
= n

(
v f

v0

)−1

β−1, (3)

which depends on the inverse of β, and βvd can only take
discrete values.

In addition to the potential finesse, both the potential
strength and the fluid velocity influence the drift velocity of
the circle swimmer. Figures 3(a) and 3(b) for v f = 0.5v0 and
1.3v0, respectively, show the drift velocity for several values
of α. The average drift velocities for different values of α and
β tend to fall on a general set of curves (especially for high
values of α) represented by the dashed gray curves showing
theoretical values from Eq. (3) for distinct values of n. With
an increase in α, the drift velocity tends to decrease. As
shown in Fig. 3(a) for small values of α = 0.2 and 0.4 and
small values of fluid velocity v f = 0.5v0, the drift velocity
curves show significant overlap. More importantly, in this
regime the drift velocity can exceed the driving fluid velocity
for some values of β (see Supplemental video [54] v05.m4v
for demonstration of the corresponding trajectories). For high
values of potential strength, the potential decreases the relative
drift velocity, while for small values of potential strength the
potential enhances the drift. As shown in Fig. 3(b), at values
of fluid velocity v f = 1.3v0 higher than the powered velocity
v0, the overlaps between the curves for different α values

decrease significantly. Using these results, under the same
periodic potential we can set the potential parameters such that
particles with different dynamical properties can be separated.
The supplemental video sep.m1v demonstrates the separation
of two particles.

B. Addition of stochastic dynamics

Noise at the microscale can be as strong as deterministic
motion [16,55,56] and can have a significant effect on the
dynamics of circle swimmers [23,57–59]. Correspondingly,
the addition of noise to our system makes significant changes
to drift velocity. Apart from some fluctuations for small values
of β, the drift velocity is independent of β. In the regime of
small β, parts of the drift velocity curves behave similarly to
the deterministic dynamics and fall on the dashed theoretical
curves according to Eq. (3). However, the transitions between
the predicted theoretical states are continuous and we do not
observe jumps between discrete curves as in the deterministic
scenarios in Figs. 3(a) and 3(b). For example, as shown in
Figs. 2(k) and 2(l), with a small change in β from 8.92 to
8.93, the trajectory significantly changes, but if we have a
noise present, these two states can interchange easily. There-
fore, the displacement is effectively an average over possible
displacements near β = 8.92. The noise smooths the disconti-
nuities seen in the deterministic plots. With an increase in fluid
velocity, the domain of β over which we observe the plateau
behavior increases.

Contrary to the deterministic scenario, where in each pe-
riod the microswimmer passes a specific number of potential
maxima, the introduction of noise leads to a continuous range
of displacements during a cycle. The resulting drift velocity
is an average over these displacements per cycle. In Fig. 3(d),
for α = 1.2 and v f /v0 = 1.3, we have identified four points
with β equal to 5 for f , 10 for g, 15 for h, and 20 for i. Their
corresponding histograms for relative drift per cycle in the x
direction, vx/v f , are plotted in Figs. 3(e)–3(h) The velocity
in the x direction, vx = �x/T , is measured by dividing the
displacement �x after one period T .

In the histograms, the peaks correspond to displacements
equal to multiples of the wavelength and suggest that the
chance of a particle going into a local minimum after each
cycle is high. The presence of multiple peaks shows that a
swimmer passes different numbers of maxima at different
cycles, but these numbers have a limited range. While these
histograms are distinct for different values of β, the drift is al-
most the same and independent of β, because the drift velocity
is the statistical average over the displacements. Within this
framework, the histogram for a deterministic scenario would
be a single peak delta function. The addition of the noise
widens the distribution.

Figure 4 shows phase diagrams of the relative drift veloc-
ities vd/v0 and vd/v f in the plateau regime as a function of
dimensionless potential strength α and relative fluid velocity
v f /v0 for γ0 = 0.1. At small values of α, the particle drifts
with a velocity close to fluid velocity. In the regime of strong
potential and small fluid velocity, the drift is very small.
Figure 4(b) shows how to modulate and fine-tune the drift
velocity as a fraction of fluid flow by changing the poten-
tial strength. We can differentiate and separate particles with
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FIG. 4. The behavior in the β-independent regime for γo = 0.1.

distinct dynamical properties (powered rectilinear speed v0

and angular velocity ω). In an experimental setup v f , C, and
K (or λ) are fixed. For a given Brownian circle swimmer, if
v0 and ω are such that β = v0K/ω falls in the β-independent
plateau regime, effectively only v0 through α = CK/v0 con-
tributes to the drift velocity, while if β falls in nonplateau
regime, both ω and v0 affect the drift velocity.

IV. CONCLUSION

We studied the drift motion of circle swimmers in a peri-
odic potential using Langevin formalism. In the deterministic
regime, the drift velocity as a function of potential finesse
consists of a discrete set of curves. Each curve represents
a set of trajectories along which the particle only passes a
specific number of potential maxima. While increasing the
potential finesse, the drift velocity hops between these curves
moving toward passing a greater number of potential maxima
per cycle. In the regime where noise has a significant effect on
the dynamics, the discontinuous curves for a given potential
strength become continuous with oscillatons at small β and a
plateau at larger values. By choosing appropriate potential pa-
rameters and fluid velocity, we can separate circle swimmers
based on their rectilinear and angular velocities.

ACKNOWLEDGMENTS

This work was supported by funding from the University
of Akron. We are grateful to Paul Lammert, Wei Wang, and
Nathaniel Wentzel for their insightful comments and sug-
gestions. A. Frankowski, A.O., and A. Fuller acknowledge
funding from Undergraduate Research Opportunities Program
through the Department of Mechanical Engineering at the
University of Akron.

[1] F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila,
A. Nourhani, and J. Wang, Smart materials for microrobots,
Chem. Rev. 122, 5365 (2022).

[2] S. A. Nabavizadeh, J. Castañeda, J. G. Gibbs, and A. Nourhani,
Gravitropically stabilized self-assembly of active microcrystal-
lites and spinning free Janus particles, Part. Part. Syst. Charact.
39, 2100232 (2022).

[3] C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma, and Q. He, Biomedical
micro-/nanomotors: From overcoming biological barriers to in
vivo imaging, Adv. Mater. 33, 2000512 (2021).

[4] J. Ou, K. Liu, J. Jiang, D. A. Wilson, L. Liu, F. Wang, S. Wang,
Y. Tu, and F. Peng, Micro-/nanomotors toward biomedical ap-
plications: The recent progress in biocompatibility, Small 16,
1906184 (2020).

[5] M. Safdar, S. U. Khan, and J. Jänis, Progress toward catalytic
micro- and nanomotors for biomedical and environmental ap-
plications, Adv. Mater. 30, 1703660 (2018).

[6] M. Wan, T. Li, H. Chen, C. Mao, and J. Shen, Biosafety, func-
tionalities, and applications of biomedical micro/nanomotors,
Angew. Chem., Int. Ed. 60, 13158 (2021).

[7] J. Parmar, D. Vilela, K. Villa, J. Wang, and S. Sanchez, Micro-
and nanomotors as active environmental microcleaners and
sensors, J. Am. Chem. Soc. 140, 9317 (2018).

[8] L. Soler and S. Sánchez, Catalytic nanomotors for environ-
mental monitoring and water remediation, Nanoscale 6, 7175
(2014).

[9] M. Safdar, J. Simmchen, and J. Jänis, Light-driven micro- and
nanomotors for environmental remediation, Environ. Sci.: Nano
4, 1602 (2017).

[10] M. Zarei and M. Zarei, Self-propelled micro/nanomotors for
sensing and environmental remediation, Small 14, 1800912
(2018).

[11] X. Ma, K. Hahn, and S. Sanchez, Catalytic mesoporous Janus
nanomotors for active cargo delivery, J. Am. Chem. Soc. 137,
4976 (2015).

[12] D. Xu, Y. Wang, C. Liang, Y. You, S. Sanchez, and X. Ma, Self-
propelled micro/nanomotors for on-demand biomedical cargo
transportation, Small 16, 1902464 (2020).

[13] S. Sundararajan, S. Sengupta, M. E. Ibele, and A. Sen,
Drop-off of colloidal cargo transported by catalytic Pt-
Au nanomotors via photochemical stimuli, Small 6, 1479
(2010).

[14] J. A. Tejeda-Rodríguez, A. Nunez, F. Soto, V. García-Gradilla,
R. Cadena-Nava, J. Wang, and R. Vazquez-Duhalt, Virus-
based nanomotors for cargo delivery, ChemNanoMat 5, 194
(2019).

054610-5

https://doi.org/10.1021/acs.chemrev.0c00999
https://doi.org/10.1002/ppsc.202100232
https://doi.org/10.1002/adma.202000512
https://doi.org/10.1002/smll.201906184
https://doi.org/10.1002/adma.201703660
https://doi.org/10.1002/anie.202013689
https://doi.org/10.1021/jacs.8b05762
https://doi.org/10.1039/C4NR01321B
https://doi.org/10.1039/C7EN00367F
https://doi.org/10.1002/smll.201800912
https://doi.org/10.1021/jacs.5b02700
https://doi.org/10.1002/smll.201902464
https://doi.org/10.1002/smll.201000227
https://doi.org/10.1002/cnma.201800403


MOHAMMAD NABIL et al. PHYSICAL REVIEW E 105, 054610 (2022)

[15] A. Nourhani, D. Brown, N. Pletzer, and J. G. Gibbs, En-
gineering contactless particle–particle interactions in active
microswimmers, Adv. Mater. 29, 1703910 (2017).

[16] A. Nourhani, Y.-M. Byun, P. E. Lammert, A. Borhan, and
V. H. Crespi, Nanomotor mechanisms and motive force distri-
butions from nanorotor trajectories, Phys. Rev. E 88, 062317
(2013).

[17] D. Ahmed, M. Lu, A. Nourhani, P. E. Lammert, Z. Stratton,
H. S. Muddana, V. H. Crespi, and T. J. Huang, Selectively ma-
nipulable acoustic-powered microswimmers, Sci. Rep. 5, 9744
(2015).

[18] C. Reichhardt and C. O. Reichhardt, Dynamics and separation
of circularly moving particles in asymmetrically patterned ar-
rays, Phys. Rev. E 88, 042306 (2013).

[19] M. Mijalkov and G. Volpe, Sorting of chiral microswimmers,
Soft Matter 9, 6376 (2013).

[20] R. Ledesma-Aguilar, H. Löwen, and J. M. Yeomans, A circle
swimmer at low Reynolds number, Eur. Phys. J. E 35, 70
(2012).

[21] M. Nabil, S. A. Nabavizadeh, P. E. Lammert, and A. Nourhani,
A spectral method for axisymmetric Stokes flow past a particle,
J. Fluid Mech. 936, R1 (2022).

[22] S. van Teeffelen and H. Löwen, Dynamics of a Brownian circle
swimmer, Phys. Rev. E 78, 020101(R) (2008).

[23] A. Nourhani, P. E. Lammert, A. Borhan, and V. H. Crespi, Chi-
ral diffusion of rotary nanomotors, Phys. Rev. E 87, 050301(R)
(2013).

[24] T. Jamali and A. Naji, Active fluids at circular boundaries:
Swim pressure and anomalous droplet ripening, Soft Matter 14,
4820 (2018).

[25] F.-j. Lin, J.-j. Liao, and B.-q. Ai, Separation and alignment of
chiral active particles in a rotational magnetic field, J. Chem.
Phys. 152, 224903 (2020).

[26] A. Nourhani, V. H. Crespi, and P. E. Lammert, Guiding Chiral
Self-Propellers in a Periodic Potential, Phys. Rev. Lett. 115,
118101 (2015).

[27] J.-c. Wu, J.-n. Zhou, and B.-q. Ai, Transport reversals of chi-
ral active particles induced by a perpendicular constant force,
Physica A 462, 864 (2016).

[28] H. Ribeiro, W. Ferreira, and F. Q. Potiguar, Trapping and sorting
of active matter in a periodic background potential, Phys. Rev.
E 101, 032126 (2020).

[29] S. Kumari, A. S. Nunes, N. A. Araújo, and M. M. Telo da Gama,
Demixing of active particles in the presence of external fields,
J. Chem. Phys. 147, 174702 (2017).

[30] J. N. Johnson, A. Nourhani, R. Peralta, C. McDonald, B.
Thiesing, C. J. Mann, P. E. Lammert, and J. G. Gibbs, Dynamic
stabilization of Janus sphere trans-dimers, Phys. Rev. E 95,
042609 (2017).

[31] B.-q. Ai, Z.-g. Shao, and W.-r. Zhong, Mixing and demixing of
binary mixtures of polar chiral active particles, Soft Matter 14,
4388 (2018).

[32] S. Tang, F. Zhang, J. Zhao, W. Talaat, F. Soto, E. Karshalev,
C. Chen, Z. Hu, X. Lu, J. Li et al., Structure-dependent
optical modulation of propulsion and collective behavior of
acoustic/light-driven hybrid microbowls, Adv. Funct. Mater. 29,
1809003 (2019).

[33] C. Reichhardt and C. O. Reichhardt, Reversibility, pattern for-
mation, and edge transport in active chiral and passive disk
mixtures, J. Chem. Phys. 150, 064905 (2019).

[34] S. Jahanshahi, C. Lozano, B. Ten Hagen, C. Bechinger, and
H. Löwen, Colloidal Brazil nut effect in microswimmer mix-
tures induced by motility contrast, J. Chem. Phys. 150, 114902
(2019).

[35] J.-l. Liu, S.-c. Lu, and B.-q. Ai, Ratchet transport of chiral
particles caused by the transversal asymmetry: Current rever-
sals and particle separation, J. Phys. Soc. Jpn. 87, 064004
(2018).

[36] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C.
Bechinger, Microswimmers in patterned environments, Soft
Matter 7, 8810 (2011).

[37] A. Chamolly, T. Ishikawa, and E. Lauga, Active particles in
periodic lattices, New J. Phys. 19, 115001 (2017).

[38] C. Reichhardt and C. Reichhardt, Clogging, dynamics, and
reentrant fluid for active matter on periodic substrates, Phys.
Rev. E 103, 062603 (2021).

[39] C. Reichhardt and C. Reichhardt, Active matter commensura-
tion and frustration effects on periodic substrates, Phys. Rev. E
103, 022602 (2021).

[40] C. Reichhardt and C. Reichhardt, Directional locking effects
for active matter particles coupled to a periodic substrate, Phys.
Rev. E 102, 042616 (2020).

[41] W.-j. Zhu, W.-r. Zhong, J.-w. Xiong, and B.-q. Ai, Transport of
particles driven by the traveling obstacle arrays, J. Chem. Phys.
149, 174906 (2018).

[42] Q. Chen and B.-q. Ai, Sorting of chiral active particles
driven by rotary obstacles, J. Chem. Phys. 143, 104113
(2015).

[43] W. R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D. B. Weibel,
H. C. Berg, and G. M. Whitesides, Escherichia coli swim on the
right-hand side, Nature (London) 435, 1271 (2005).

[44] H. C. Berg and L. Turner, Chemotaxis of bacteria in glass
capillary arrays. Escherichia coli, motility, microchannel plate,
and light scattering, Biophys. J. 58, 919 (1990).

[45] B. M. Friedrich and F. Jülicher, Chemotaxis of sperm cells,
Proc. Natl. Acad. Sci. 104, 13256 (2007).
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